32 research outputs found

    Measures of Health-Related Quality of Life Outcomes in Pediatric Neurosurgery: Literature Review

    Get PDF
    Background Improving value in healthcare means optimizing outcomes and minimizing costs. The emerging pay-for-performance era requires understanding of the effect of healthcare services on health-related quality of life (HRQoL). Pediatric and surgical subspecialties have yet to fully integrate HRQoL measures into practice. The present study reviewed and characterized the HRQoL outcome measures across various pediatric neurosurgical diagnoses. Methods A literature review was performed by searching PubMed and Google Scholar with search terms such as “health-related quality of life” and “pediatric neurosurgery” and then including the specific pathologies for which a HRQoL instrument was found (e.g., “health-related quality of life” plus “epilepsy”). Each measurement was evaluated by content and purpose, relative strengths and weaknesses, and validity. Results We reviewed 68 reports. Epilepsy, brain tumor, cerebral palsy, spina bifida, hydrocephalus, and scoliosis were diagnoses found in reported studies that had used disease-specific HRQoL instruments. Information using general HRQoL instruments was also reported. Internal, test–retest, and/or interrater reliability varied across the instruments, as did face, content, concurrent, and/or construct validity. Few instruments were tested enough for robust reliability and validity. Significant variability was found in the usage of these instruments in clinical studies within pediatric neurosurgery. Conclusions The HRQoL instruments used in pediatric neurosurgery are currently without standardized guidelines and thus exhibit high variability in use. Clinicians should support the development and application of these methods to optimize these instruments, promote standardization of research, improve performance measures to reflect clinically modifiable and meaningful outcomes, and, ultimately, lead the national discussion in healthcare quality and patient-centered care

    Axenfeld-Rieger syndrome: A systematic review examining genetic, neurological, and neurovascular associations to inform screening

    No full text
    Axenfeld-Rieger Syndrome (ARS) is comprised of a group of autosomal dominant disorders that are each characterized by anterior segment abnormalities of the eye. Mutations in the transcription factors FOXC1 or PITX2 are the most well-studied genetic manifestations of this syndrome.Due to the rarity this syndrome, ARS-associated neurological manifestations have not been well characterized. The purpose of this systematic review is to characterize and describe ARS neurologic manifestations that affect the cerebral vasculature and their early and late sequelae.PRISMA guidelines were followed; studies meeting inclusion criteria were analyzed for study design, evidence level, number of patients, patient age, whether the patients were related, genotype, ocular findings, and nervous system findings, specifically neurostructural and neurovascular manifestations.63 studies met inclusion criteria, 60 (95%) were case studies or case series. The FOXC1 gene was most commonly found, followed by COL4A1, then PITX2. The most commonly described structural neurological findings were white matter abnormalities in 26 (41.3%) of studies, followed by Dandy-Walker Complex 12 (19%), and agenesis of the corpus callosum 11 (17%). Neurovascular findings were examined in 6 (9%) of studies, identifying stroke, cerebral small vessel disease (CSVD), tortuosity/dolichoectasia of arteries, among others, with no mention of moyamoya.This is the first systematic review investigating the genetic, neurological, and neurovascular associations with ARS. Structural neurological manifestations were common, yet often benign, perhaps limiting the utility of MRI screening. Neurovascular abnormalities, specifically stroke and CSVD, were identified in this population. Stroke risk was present in the presence and absence of cardiac comorbidities. These findings suggest a relationship between ARS and neurovascular findings; however, larger scale studies are necessary inform therapeutic decisions

    The impact of steroids, methotrexate, and biologics on clinical and radiographic outcomes in patients with rheumatoid arthritis undergoing fusions at the craniovertebral junction

    No full text
    Objective: Rheumatoid arthritis (RA) is an inflammatory disease that affects the craniovertebral junction (CVJ). Patients may suffer from atlantoaxial instability (AAI) and basilar invagination (BI) with variable presentations ranging from pain to quadriparesis. Managing these patients is often challenging due to their chronic use of steroids, methotrexate, and biologics; which impedes bone and wound healing. We report our experience with the surgical management of these patients undergoing fusions at the CVJ. Materials and Methods: We conducted a retrospective study identifying all patients with the diagnosis of RA who underwent spinal fusions at our institution over the past 11 years. A total of 205 patients were identified amongst which 18 patients (8.8%) who underwent 20 fusions involving the CVJ. Demographic, clinical, and radiographic data were analyzed. Results: Five patients had AAI and 13 patients had BI. Two patients with C1-2 fusions underwent reoperation: One for pseudoarthrosis and one for BI. The average preoperative Nurick was 1.4 and improved to 0.5 postoperatively (P < 0.001). After conducting analyses stratified by dichotomous preoperative variables, the presence of steroids, methotrexate, biologics, and prednisone dosage less than 7.5 mg did not affect outcomes. Prednisone dosages ≥7.5 mg had significantly smaller improvements in Nurick score compared to patients not on steroids or on prednisone dosages <7.5 mg (0.40 vs 1.36, P = 0.042). Similarly, patients on biologics had significantly smaller improvements in Nurick score compared to patients not on biologics (0.27 vs 1.16, P = 0.038). Conclusion: Fusions at the CVJ in patients with RA on daily prednisone dosages of less than 7.5 mg and/or methotrexate can be performed safely with good outcomes, fusion rates, and acceptable complication profiles. Daily prednisone dosages of more than 7.5 mg or biologics may impact clinical outcomes

    Standard work tools for dynamic stereoelectroencephalography using ROSA: naming convention and perioperative planning

    Get PDF
    OBJECTIVE The grid-based orthogonal placement of depth electrodes (DEs), initially defined by Jean Talairach and Jean Bancaud, is known as stereo-electroencephalography (sEEG). Although acceptance in the United States was initially slow, advances in imaging and technology have spawned a proliferation of North American epilepsy centers offering sEEG. Despite publications highlighting minimal access techniques and varied indications, standard work for phase I targeted DE has not been defined. In this article, the authors propose the term “dynamic sEEG” and define standard work tools and related common data elements to promote uniformity in the field. METHODS A multidisciplinary approach from July to August 2016 resulted in the production of 4 standard work tools for dynamic sEEG using ROSA: 1) a 34-page illustrated manual depicting a detailed workflow; 2) a planning form to collocate all the phase I data; 3) a naming convention for DEs that encodes the data defining it; and 4) a reusable portable perioperative planning and documentation board. A retrospective review of sEEG case efficiency was performed comparing those using standard work tools (between July 2016 and April 2017) with historical controls (between March 2015 and June 2016). The standard work tools were then instituted at another epilepsy surgery center, and the results were recorded. RESULTS The process for dynamic sEEG was formally reviewed, including anesthesia, positioning, perioperative nursing guidelines, surgical steps, and postoperative care for the workflow using cranial fixation and ROSA-guided placement. There was a 40% improvement in time per electrode, from 44.7 ± 9.0 minutes to 26.9 ± 6.5 minutes (p = 0.0007) following the development and use of the manual, the naming convention, and the reusable portable perioperative planning and documentation board. This standardized protocol was implemented at another institution and yielded a time per electrode of 22.3 ± 4.4 minutes. CONCLUSIONS The authors propose the term dynamic sEEG for stereotactic depth electrodes placed according to phase I workup data with the intention of converting to ablation. This workflow efficiency can be optimized using the standard work tools presented. The authors also propose a novel naming convention that encodes critical data and allows portability among providers. Use of a planning form for common data elements optimizes research, and global adoption could facilitate multicenter studies correlating phase I modality and seizure onset zone identification

    A National Survey Evaluating the Impact of the COVID-19 Pandemic on Students Pursuing Careers in Neurosurgery

    No full text
    Background: The COVID-19 pandemic has profoundly disrupted medical education and the residency application process. Methods: We conducted a descriptive observational study in April 2020 of medical students and foreign medical graduates considering or pursuing careers in neurosurgery in the United States to examine the impact of the pandemic. Results: A total of 379 respondents from 67 medical schools completed the survey. Across all participants, 92% (n = 347) stopped in-person didactic education, and 43% (n = 161) experienced basic science and 44% (n = 167) clinical research delays. Sixty percent (n = 227) cited a negative impact on academic productivity. Among first year students, 18% (n = 17) were less likely to pursue a career in neurosurgery. Over half of second year and third year students were likely to delay taking the United States Medical Licensing Examination Steps I and II. Among third year students, 77% (n = 91) reported indefinite postponement of sub-internships, and 43% (n = 53) were unsatisfied with communication from external programs. Many fourth-year students (50%, n = 17) were graduating early to participate in COVID-19-related patient care. Top student-requested support activities included access to student-focused educational webinars and sessions at upcoming conferences. Conclusions: Medical students pursuing careers in neurosurgery faced unique academic, career, and personal challenges secondary to the pandemic. These challenges may become opportunities for new initiatives guided by professional organizations and residency programs

    Measuring surgical outcomes in cervical spondylotic myelopathy patients undergoing anterior cervical discectomy and fusion: assessment of minimum clinically important difference.

    Get PDF
    OBJECT: The concept of minimum clinically important difference (MCID) has been used to measure the threshold by which the effect of a specific treatment can be considered clinically meaningful. MCID has previously been studied in surgical patients, however few studies have assessed its role in spinal surgery. The goal of this study was to assess the role of MCID in patients undergoing anterior cervical discectomy and fusion (ACDF) for cervical spondylotic myelopathy (CSM). METHODS: Data was collected on 30 patients who underwent ACDF for CSM between 2007 and 2012. Preoperative and 1-year postoperative Neck Disability Index (NDI), Visual-Analog Scale (VAS), and Short Form-36 (SF-36) Physical (PCS) and Mental (MCS) Component Summary PRO scores were collected. Five distribution- and anchor-based approaches were used to calculate MCID threshold values average change, change difference, receiver operating characteristic curve (ROC), minimum detectable change (MDC) and standard error of measurement (SEM). The Health Transition Item of the SF-36 (HTI) was used as an external anchor. RESULTS: Patients had a significant improvement in all mean physical PRO scores postoperatively (p<0.01) NDI (29.24 to 14.82), VAS (5.06 to 1.72), and PCS (36.98 to 44.22). The five MCID approaches yielded a range of values for each PRO: 2.00-8.78 for PCS, 2.06-5.73 for MCS, 4.83-13.39 for NDI, and 0.36-3.11 for VAS. PCS was the most representative PRO measure, presenting the greatest area under the ROC curve (0.94). MDC values were not affected by the choice of anchor and their threshold of improvement was statistically greater than the chance of error from unimproved patients. CONCLUSION: SF-36 PCS was the most representative PRO measure. MDC appears to be the most appropriate MCID method. When MDC was applied together with HTI anchor, the MCID thresholds were: 13.39 for NDI, 3.11 for VAS, 5.56 for PCS and 5.73 for MCS
    corecore